A New Common Proper Motion Pair in Sextans

Abdul Ahad

Luton, Bedfordshire United Kingdom <u>aa_spaceagent@yahoo.co.uk</u>

Abstract: This paper presents a new common proper motion double star that is not in the current edition of the Washington Double Star catalog. The result is a 13th magnitude companion that appears to share the same space motion with the 10th magnitude orange primary star, BD-09 3056, in Sextans.

Introduction

In the past few years, I have been seeking to identify new visual double stars that display a number of favorable attributes that make them attractive candidates for possible binary systems. This has meant conducting searches of the sky both visually, using my Skywatcher Explorer 8-inch EQ-5 F/5 Newtonian reflecting telescope, as well as photographically going down to as low as 13th magnitude pairs using the DSS / POSS survey images where possible.

Methods

The new pair reported in this paper first came to my attention as a pair of partially resolved stars of greatly unequal brightness in a STScI digitized sky survey image plate on January 21st 2012, while I was investigating another pair from the Washington Double Star (WDS) catalog. Later, I noticed the two stars were of similar orange colors, and were excluded from the WDS catalog and so I took an even greater interest. I was able to pinpoint them in the SIMBAD/Aladin previewer at ICRS coordinates 10 22 44.8972 -09 55 39.780 (J2000.0) which showed the primary star as BD-09 3056, of visual magnitude +10.20. A DSS image of the pair is shown in Figure 1.

Figure 1: DSS image of the proposed new common proper motion pair.

Measurements

The Aladin applet facilitated taking a measurement of this pair on the above DSS image, yielding

A New Common Proper Motion Pair in Sextans

these results:

Position Angle (theta): 203.5° Separation (rho): 8.804"

Via the 'prop' icon of Plane ID: DSS2.ER.SERC. the precise epoch of the above DSS image was found to be 1991-04-10 (J1991.2716). The stated measurements of theta and rho, therefore, are for this epoch.

Likelihood of Binarity

kind of physical gravitational association between similar proper motions (PM) in RA and Dec, both in +10.3, virtually the same as the primary star's apparmagnitude and in direction. The PPMXL catalog ent magnitude of +10.2 in this double. (Roeser+ 2010) shows this to be the case for this particular double star, giving the approximate results as in this Sextans double star (BD-09 3056) is of compashown in Table 1.

The pair, as a whole, thus has a total proper motion of: ($[(-1.0)^2 + (-44.5)^2]^{\frac{1}{2}} + [(-2.2)^2 + (-41.5)^2]^{\frac{1}{2}})/2$ as magnitude 13.0 in the PPMXL catalog. By a simi- $= \sim 43.0$ milli-arcseconds per year.

Two further parameters are required to fully establish binarity in a visual double star system, i.e. the in this pair is found to be a low-mass red dwarf, pertwo stars must have similar radial velocities and also haps of similar mass and luminosity as the star 61 trigonometrical parallaxes. Neither of those was Cygni B in that famous binary system. At a projected available for the two stars in this pair in the catalogs distance of circa 300 light-years from Earth, the linthat I could access, so I resorted to other methods ear distance separating the two stars in this Sextans that I have used in the past to assess the situation.

In my report in the Webb Society DSSC 19¹ I showed for purposes of illustration the distances and proper motions of a number of binary systems, and the basic correlation that exists between these two parameters. Referring to that scale, a proper motion light-years distant from the Earth.

Considering the primary star in this pair is orange in color, for it to display a proper motion rate of 43 mas/year and shine with an apparent magnitude of 10.2, it is likely to be a K-type main sequence dwarf. Ahad, A. 2011 Webb Society Double Star Section Cir-If it were anything other than this, it would either shine with a different apparent brightness or display an altogether different rate of proper motion across the sky. Now the star 70 Ophiuchi A, in the 70 Ophiuchi binary system is a K0 V type main sequence dwarf

Table 1: Proper motion of components.

Sextans Double	Proper Motion in	Proper Motion in
Star	RA	Dec
A-component	-1.0 mas/year	-44.5 mas/year
B-component	-2.2 mas/year	-41.5 mas/year

star, whose apparent magnitude is +4.0 and whose absolute magnitude is +5.5. If we apply the distance For two stars in a visual double star to have any modulus formulae I had previously stated in my report in the Webb Society DSSC 18^2 , we find that 70 them, first and foremost they must both display very Ophiuchi A would shine at an apparent magnitude of

> This is strongly indicative that the primary star rable mass and luminosity to 70 Ophiuchi A.

> The secondary star in this Sextans pair is listed lar set of comparative calculations as with the primary shown above, the 13th magnitude secondary star pair is likely to be: Tan (8.804") x 300 x 63240 = 810 Astronomical Units. Where 63240 is the number of Astronomical Units in one light-year.

Conclusions

In the absence of precise parallax and radial veof ~ 43.0 mas/year for this Sextans double star sug- locity measurements for both stars it is difficult to be gests the pair is located somewhere around ~ 300 one hundred percent certain, but otherwise all the parameters fittingly point to this being a good candidate for a slow binary system of long orbital period.

References

- cular, 19, 48
- Ahad, A. 2010 Webb Society Double Star Section Circular, 18, 49